Adding some more judges, here and there.
[and.git] / UVa / 11665 - Chinese Ink / 11665.3.cpp
bloba539ac54d7bf6d4e2af2711a5274bd2d5bcf1982
1 // Accepted
2 using namespace std;
3 #include <algorithm>
4 #include <iostream>
5 #include <iterator>
6 #include <numeric>
7 #include <sstream>
8 #include <fstream>
9 #include <cassert>
10 #include <climits>
11 #include <cstdlib>
12 #include <cstring>
13 #include <string>
14 #include <cstdio>
15 #include <vector>
16 #include <cmath>
17 #include <queue>
18 #include <deque>
19 #include <stack>
20 #include <list>
21 #include <map>
22 #include <set>
24 #define foreach(x, v) for (typeof (v).begin() x=(v).begin(); x !=(v).end(); ++x)
25 #define For(i, a, b) for (int i=(a); i<(b); ++i)
26 #define D(x) cout << #x " is " << x << endl
28 #define EPS 1e-9
30 typedef pair<int, int> point;
31 typedef vector< point > polygon;
33 vector< polygon > polygons;
35 const int MAXN = 50;
36 int p[MAXN];
38 int find(int u) {
39 return p[u] == u ? u : p[u] = find(p[u]);
42 void link(int u, int v) {
43 if (find(u) != find(v)) {
44 p[find(u)] = find(v);
48 // Polar angle
49 // Returns an angle in the range [0, 2*Pi) of a given Cartesian point.
50 // If the point is (0,0), -1.0 is returned.
51 // REQUIRES:
52 // include math.h
53 // define EPS 0.000000001, or your choice
54 // P has members x and y.
55 double polarAngle( point p ) {
56 double x = p.first, y = p.second;
57 if(fabs(x) <= EPS && fabs(y) <= EPS) return -1.0;
58 if(fabs(x) <= EPS) return (y > EPS ? 1.0 : 3.0) * acos(0);
59 double theta = atan(1.0 * y / x);
60 if(x > EPS) return(y >= -EPS ? theta : (4*acos(0) + theta));
61 return(2 * acos( 0 ) + theta);
64 //Point inside polygon
65 // Returns true iff p is inside poly.
66 // PRE: The vertices of poly are ordered (either clockwise or
67 // counter-clockwise.
68 // POST: Modify code inside to handle the special case of "on
69 // an edge".
70 // REQUIRES:
71 // polarAngle()
72 // include math.h
73 // include vector
74 // define EPS 0.000000001, or your choice
75 bool pointInPoly( point p, const polygon &poly ) {
76 int n = poly.size();
77 double ang = 0.0;
78 for(int i = n - 1, j = 0; j < n; i = j++){
79 point v( poly[i].first - p.first, poly[i].second - p.second );
80 point w( poly[j].first - p.first, poly[j].second - p.second );
81 double va = polarAngle(v);
82 double wa = polarAngle(w);
83 double xx = wa - va;
84 if(va < -0.5 || wa < -0.5 || fabs(fabs(xx)-2*acos(0)) < EPS){
85 // POINT IS ON THE EDGE
86 return true;
87 assert( false );
88 ang += 2 * acos( 0 );
89 continue;
91 if( xx < -2 * acos( 0 ) ) ang += xx + 4 * acos( 0 );
92 else if( xx > 2 * acos( 0 ) ) ang += xx - 4 * acos( 0 );
93 else ang += xx;
95 return( ang * ang > 1.0 );
100 Returns true if point (x, y) lies inside (or in the border)
101 of box defined by points (x0, y0) and (x1, y1).
103 bool point_in_box(double x, double y,
104 double x0, double y0,
105 double x1, double y1){
106 return
107 min(x0, x1) <= x && x <= max(x0, x1) &&
108 min(y0, y1) <= y && y <= max(y0, y1);
113 Finds the intersection between two segments (Not infinite
114 lines!)
115 Segment 1 goes from point (x0, y0) to (x1, y1).
116 Segment 2 goes from point (x2, y2) to (x3, y3).
118 (Can be modified to find the intersection between a segment
119 and a line)
121 Handles the case when the 2 segments are:
122 *Parallel but don't lie on the same line (No intersection)
123 *Parallel and both lie on the same line (Infinite
124 *intersections or no intersections)
125 *Not parallel (One intersection or no intersections)
127 Returns true if the segments do intersect in any case.
129 bool segment_segment_intersection(int x1, int y1,
130 int x2, int y2,
132 int x3, int y3,
133 int x4, int y4){
135 int d1 = (x1 - x3) * (y4 - y3) - (y1 - y3) * (x4 - x3);
136 int d2 = (x2 - x3) * (y4 - y3) - (y2 - y3) * (x4 - x3);
137 int d3 = (x3 - x1) * (y2 - y1) - (y3 - y1) * (x2 - x1);
138 int d4 = (x4 - x1) * (y2 - y1) - (y4 - y1) * (x2 - x1);
140 bool b1 = d1 > 0 and d2 < 0 or d1 < 0 and d2 > 0;
141 bool b2 = d3 > 0 and d4 < 0 or d3 < 0 and d4 > 0;
142 if (b1 and b2) return true;
143 if (d1 == 0 and point_in_box(x1, y1, x3, y3, x4, y4)) return true;
144 if (d2 == 0 and point_in_box(x2, y2, x3, y3, x4, y4)) return true;
145 if (d3 == 0 and point_in_box(x3, y3, x1, y1, x2, y2)) return true;
146 if (d4 == 0 and point_in_box(x4, y4, x1, y1, x2, y2)) return true;
147 return false;
150 bool polygonsIntersect(const polygon &a, const polygon &b) {
151 int na = a.size(), nb = b.size();
152 for (int i = 0; i < na; ++i) {
153 if (pointInPoly(a[i], b)) return true;
155 for (int i = 0; i < nb; ++i) {
156 if (pointInPoly(b[i], a)) return true;
159 for (int i = 0; i < na; ++i) {
160 for (int j = 0; j < nb; ++j) {
161 int xa1 = a[i].first, ya1 = a[i].second;
162 int xa2 = a[(i + 1) % na].first, ya2 = a[(i + 1) % na].second;
163 int xb1 = b[j].first, yb1 = b[j].second;
164 int xb2 = b[(j + 1) % nb].first, yb2 = b[(j + 1) % nb].second;
165 if (segment_segment_intersection(xa1, ya1, xa2, ya2, xb1, yb1, xb2, yb2)) {
166 return true;
172 return false;
176 void solve() {
177 int n = polygons.size();
178 for (int i = 0; i < n; ++i) {
179 p[i] = i;
182 for (int i = 0; i < n; ++i) {
183 for (int j = i + 1; j < n; ++j) {
184 if (polygonsIntersect(polygons[i], polygons[j])) {
185 link(i, j);
189 set<int> ans;
190 for (int i = 0; i < n; ++i) {
191 ans.insert(find(i));
193 cout << ans.size() << endl;
197 int main(){
198 int n;
199 while (cin >> n) {
200 if (n == 0) break;
201 string s; getline(cin, s);
202 polygons.clear();
203 for (int i = 0; i < n; ++i){
204 polygons.push_back(polygon());
205 getline(cin, s);
206 stringstream sin(s);
207 int x, y;
208 while (sin >> x >> y) {
209 polygons.back().push_back(point(x, y));
211 assert(polygons.back().size() >= 3);
213 assert(polygons.size() == n);
215 solve();
217 return 0;